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ON SOME TWISTED COHOMOLOGY OF THE RING
OF INTEGERS

SEOK-MIN LEE*

ABSTRACT. As an analogy of Poincaré series in the space of mod-
ular forms, T. Ono associated a module M./P. for v = [c] €
H'(G, R*) where finite group G is acting on a ring R. M./P, is re-
garded as the 0-dimensional twisted Tate cohomology H(G, RT).,.
In the case that G is the Galois group of a Galois extension K of
a number field k£ and R is the ring of integers of K, the vanishing
properties of M./ P, are related to the ramification of K/k. We gen-
eralize this to arbitrary n-dimensional twisted cohomology of the
ring of integers and obtain the extended version of theorems. More-
over, some explicit examples on quadratic and biquadratic number
fields are given.

1. Introduction

T. Ono developed an algebraic analogy of the space of modular forms
and the subspace of Poincaré series in the cohomological point of view,
as a form of quotient module. Let G be a finite group acting on a ring
R with the unit 1 and denote the action by (s,a) — ®a, a € R, s € G.
Since the group G acts on the unit group R* of R, we can consider the
1-cocycle set

ZYH G, R*) ={c: G — R*; ¢y = cs %, 5,1 € GY,

where ¢; = ¢(s) for a cocycle ¢ and s € G. Two cocycles ¢, are
equivalent (cohomologous), denoted by ¢ ~ ¢, if there is a unit element
u € R* such that ¢, = u=lcs%u, s € G. The cohomology set is defined
by

HY(G,R*) = Z"(G,R*)/ ~ .

Received December 03, 2016; Accepted January 09, 2017.

2010 Mathematics Subject Classification: 11R16, 11R34, 11S15.

Key words and phrases: twisted cohomology, twisted module, Poincaré sum, bi-
quadratic field.

This work was supported by 2014 Hongik University Research Fund.



78 Seok-Min Lee

For a 1-cocycle ¢ € ZY(G, RX), T. Ono defined the modules M, and P.,
named after modular form and Poincaré series, given by

M.={a € R; ¢s°a=a, s € G}, and
Po={pla) =Y c'a; ae RY,

teG

where pc(a) is called the Poincaré sum [4, 5, 6]. The module structure
of M,/P. depends only on the cohomology class v = [¢] € H'(G, R*)
containing c. In particular, if ¢ ~ 1, the module M,/ P, is equal to the 0-
dimensional Tate cohomology HO (G, R). For a general cocycle ¢, M./ P,
can be considered as the twisted 0-Tate cohomology H %(G, R)., with the
new action a — ¢ °a. The case that G is the Galois group of a Galois
extension K/k of number fields and R is the ring of integers O of K
was studied in [4, 5, 6, 7]. T. Ono proved in [7] the following theorems;

THEOREM 1.1. Let K/k be a finite Galois extension of number fields.
If K/k is unramified or tamely ramified, then M. = P, for all cocycle

ce€ ZYGal(K/k),Ok™).

THEOREM 1.2. Let K/k be a finite Galois extension of number fields
and G = Gal(K/k). For a cocycle c € Z'(G,Ok*) denote by cy the
cocycle induced from c by localization at 3. Then we have the product
relation (M : Pe) = [[,(Mey : Pey,) where for each p we choose one P
dividing p.

In this work, these theorems are generalized as follows: First, we
define n-dimensional twisted cohomology H"(G, Of). in section 2, then
we show that if K/k is tamely ramified then the twisted n-cohomology
vanishes for any integer n and for any cocycle ¢ (Theorem 3.1), and that

H™(G,Or)e = [ [ H" (G, Ory ey
p

where for each p we choose one B dividing p (Theorem 5.1).

On the other hand, Yokoi [9, 10, 11] and Lee and Madan [3] studied n-
dimensional Galois cohomology of the ring of integers. We may consider
this paper as a generalization of their works [3] and [9, 10, 11] into the
twisted cohomology as well.

Moreover, in Theorem 3.2 it is shown that for the cyclic Galois ex-
tension, we have |H"(G, Ok).| = |M./P,| for all positive integer n and
for all 1-cocycle ¢ € Z'(G,OF). This does not hold for a non-cyclic
extension, e.g. biquadratic fields (Section 7).
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2. n-dimensional twisted cohomology

For a 1-cocycle ¢ € Z'(G, R*), we define the twisted action (s, a)
¢s *a of G on the additive group R. We can consider R as the G-module
defined by the twisted action and let us call it a c-twisted G-module. If
A is a G-module derived from the additive group R which admits the
twisted action by ¢, then also we can consider A as a c-twisted G-module.

For a c-twisted G-module A, we have n-dimensional twisted coho-
mology group H"(G, R),. for each nonnegative integer n as follows: Let
C"(G, A)., the set of n-chains, be the set of all maps of G™ to A forn > 0
and let C°(G, A). = {1g}. The coboundary map d,11 : C*(G, A). —
C"t1(G, A). is defined by

(dnt1f)(81,- -, Sn41) =¢s; (52, Sny1)

n
+ E 81,...,82‘8i+1,...,$n+1)
1

(_ D™ f(s1,...,80)

then imd, C kerd,ii. Denote by H"(G,R). = Z"(G,R)./B"(G, R).
where Z"(G, R). = ker d,,+1 is the the twisted n-cocycle and B"(G, R). =
imd, is the twisted n-coboundary. Here we have H°(G, R). = M,
and H°(G,R), = M./P,. The twisted 1-cocycle in A is the function
d: G — A such that

dst = ds + ¢s sdt

and the twisted 1-coboundary is ds = ¢s*b — b for some b € A.
A homomorphism between c-twisted G-modules is well defined, and
induces a group homomorphism between cohomologies. As usual, if

0—-A—-B—-C—=0

is an exact sequence of c-twisted G-modules, then we have the long exact
sequence of twisted cohomology groups:

0— HYG,A). - HG,B), —» H(G,C). — H'(G, A),
- HY(G,B). —» H'(G,C). — H*(G, A), — H*(G, B).
— H*(G,0). —

Now assume that the group G is cyclic with the generator s of order
n. Define two endomorphisms A and N of c-twisted G-module A such
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that
n—1
A =1-—cqs, N:ZCSiSZ.
i=0

%

Note that ci = c¢s °cs 8265 a8 _lcs. Then we have AN = NA =0 and
this means im N C ker A and im A C ker N. It turns out to be

H(G,A). =ker A/im N, HY(G, A), = ker N/im A
and Herbrand theorem holds: If
0—-A—-B—-C—0

is an exact sequence of c-twisted G-modules, then the twisted cohomol-
ogy exact sequence is an exact hexagon:

HY(G,A). ——= HYG, B).

- T

HY(G,C HY(G,0).

™ 7

Hl(G7 B)c <~ Hl(Ga A)c

We denote by he(A) = |HY(G, A)|/|H (G, A).| the Herbrand quotient
of the twisted cohomology. If two of three Herbrand quotients h.(A),
he(B), he(C) are defined, so is the third and we have

Now we will verify that for n > 1, the structure of the twisted coho-
mology H"(G, R). twisted by ¢ depends only on the cohomology class
v =[] € H{(G, R*). Let ¢ ~ ¢, i.e. for some u € R*,

c,=utes®u  forall s € G.
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Then
feZ"(G,R)y & f:G" — Rsuch that , for s1,...,s,4+1 € G,

c/s1 1f(s2, ..y Sp+1)

n
= Z(—l)H—lf(Sl, ey SiSiH1y e 78n+1)
=1

+ (=1)"f(s1,-- -, 50)
& g, Huf(s2,. .., 5n41))

n

= (_1)i+1uf(517 <oy SiSitly - - -, 5n+1)
1

+ (:1)”uf(31,...,3n)
s uf € Z"(G, R)..

And
g € B"(G,R)w < g : G™ — R such that there exists f : G" ! = R,

g(s1, - 8n) =, " f(s2,. .., 8n)

n—1

+ Z(—l)if(sl, e 3 SiSi41s ey Sn)

=1
+ (_1)n+1f(517 o 75?171)
~ ug(sl, cee Sn) = Csy Sl(uf(SZa e ,Sn))

+ Z(—l)iuf(sh ce ey SiSit1,- .- Sn)

i=1
+ (=DM uf(s1,. .., 50-1)
< ug € B"(G, R)..
Hence we have
H"(G,R). = Z"(G,R)./B"(G,R).
= uZ"(G,R)y/uB"(G,R)s = H"(G,R).
We state this result in the following proposition.

PROPOSITION 2.1. If ¢ and ¢’ are cohomologous in Z'(G, Oy, then
we have

Hn(Gv R)c = Hn(Gv R)c/-
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3. Galois extension of number fields

Let K/k be a finite Galois extension of number fields. Through this
paper, we will take the group G as the Galois group Gal(K/k) of the
extension and the ring R as the ring of integers O of K. However, firstly
we consider the case R = K. By Hilbert’s Theorem 90, any cocycle
c € ZY(G,K*) is a coboundary, that implies, H"(G, K). = H"(G, K),
which vanishes for all dimension n. Now we take R = Og. A cocycle
ce Z4a, Oj) can be regarded as a cocycle into K, then O can be
dealt as a twisted submodule of K.

We have the generalization of Theorem 1.1 on n-dimensional twisted
cohomology.

THEOREM 3.1. If the finite Galois extension K /k of number fields is
tamely ramified, then H"(G, Ok ). vanishes for all dimension n > 1 and
for all cocycle c € Z1(G,Ok™).

Proof. Let F' be an intermediate field of K/k and T be the Galois
group of K over F. Since I' is a subgroup of G, any c-twisted G-module
is c-twisted I'-module, and twisted cohomology of I' makes sense. We
will verify that for any intermediate field F' of K/k with the Galois
group I' = Gal(K/F'), the 0- and 1-dimensional twisted Tate cohomology
groups vanish. Then the result follows.

(1) For ¢ € ZYG,0K™), let ¢ be the restriction of ¢ on I' then ¢’ €
ZYT, Ox™). Note that HO(T, Og)e = HO(I',Ok)w. Since K/k
is tamely ramified, K/F is also tamely ramified. By Theorem 1.1
and the above assertion, we have ﬁO(F, Ok)c=0.

(2) Since K/F is tamely ramified, the trace map Trg,p : O — O is
surjective so there exists an element o € O such that Trg,p(a) =
1. Let c € ZYG,0k™) be a 1-cocycle. For any twisted 1-cocycle
de Z\(T',Ok)., define 8 = > ier di o € Ok the Poincaré sum for
the twisted cocycle d then we have

ﬂ_CSSﬁ:Zdtta_chsdtsta

tel’ tel’
(3.1) => difa =) (dy — ds) "
tel’ tel’
= Zdtta — sttSta+dSZ StOé
tel’ tel’ tel

= ds . TTK/F(Oé) = ds.



On some twisted cohomology of the ring of integers 83

This implies that any twisted 1-cocycle is a twisted 1-coboundary.
O

THEOREM 3.2. Let K/k be a finite cyclic Galois extension of number
fields with the Galois group G = Gal(K/k), and let ¢ € Z'(G,Ok™) be
a 1-cocycle of G in the unit group of Ok . Then the twisted cohomology
group H"(G,Of). has the same order with ﬁO(G, Ok)e = M./P, for
every dimension n > 1.

Proof. Let s be the generator of the group G of order m. We see M,
as a twisted G-module. Since M, makes an ideal of Oy by multiplied
by a proper element of Ok as in [7], the rank of M, is same as Of. On
the other hand, let 3 € Ok be the element generating the normal basis
for K/k. Then {cg Slﬁ,csz 526, ... cem *"B} is also a basis of K/k since
the basis change matrix is diagonal with entries c,:, the unit elements.
Define

M=Mca®B+M.co B+ + Mo
then we have that the index [Ok : M] is finite and that M is G-regular
as a twisted G-module since each M.c, *'3 forms a direct summand of
M. Let N = Ok /M then N is a finite twisted G-module. We have an
exact sequence of twisted modules:

0—-M—>0g —>N—=0

Since G is cyclic, we have H%(G, Ok).

=~ 09(G,O0k). and H2-YG, O). = HY(G, Ok). for any positive inte-
ger . H"(G, M), vanishes for any n because M is a twisted G-regular
module. Hence we have ﬁO(G,(’)K)C = lEIO(G7 N). and HY(G,Ok). =
H' (G, N).. Also, since N is a finite module, we have that the Herbrand
quotient h.(NN) of the twisted cohomology of N is equal to 1, which
concludes the theorem. O

4. 1-dimensional twisted cohomology

In this section, we study the structure of 1-dimensional twisted coho-
mology. We give an analogy of the group H/j(a) suggested in [10] into
the case of twisted cohomology. Let a 1-cocycle ¢ € Z1(G, Ok ™) and a
nonzero integer a € Trg/,(Ok) in k be fixed. For a twisted 1-cocycle
d € ZY G, Ok)., we can choose an integer 3 in O such that

(4.1) B—cs’6=a-ds for all s € G.
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Indeed, let o be the element in O with the trace value a and let g =
ZtEG di ‘oo € Ok be of form of the Poincaré sum for the twisted cocycle
d then we get the equation (4.1) with the similar assertion to (3.1). From
the equation (4.1) we have that

(4.2) 8 = cs°6 mod aO.

Conversely, if § € Ok satisfies the congruence relation (4.2) then S
defines a twisted 1-cocycle d € Z'(G,Ok).. Indeed, for each s € G,
let dgs € Ok such that 8 — ¢s°8 = a - ds then dg satisfies the condition
of twisted 1l-cocycle dgt = ds + ¢s°d;. Now we obtain the following
proposition.

PROPOSITION 4.1. Denote by
Ze(a) ={B € Ok ; B=cs’8 mod aOk}
then we have
7ZNG,0K): = Zc(a)/ M.

Proof. Define the map ¢ : Z.(a) — Z'(G,Ok). as above: 8+ d such
that 8 — ¢s %6 = a - ds. Then ¢ is surjective by the above assertion and
trivially ¢ is a homomorphism. One sees that ker ¢ = M, easily. O

Now, for the twisted 1-coboundary, we have

PROPOSITION 4.2. Denote by
B.(a) ={B € Ok ; 8 =b mod aOk for some b € M.}
then we have

BY(G,0k). = Be(a)/M..

Proof. First note that clearly B.(A) C Z.(a). The homomorphism
¢ : Z.(a) = ZY(G,Ok), in the Proposition 4.1 induces an epimorphism
¢ : Be(a) — BYG, Ok), since

B € B.(a) < B =bmod aOk for some b € M,
& B —avy € M, for some v € Ok
& f—ay=cs % — ay) for some v € O
< [ —cs B =aly — cs*y) for some v € O
and B +— v —cs %y € BYG, Ok),. It is easy to see that the kernel is also
M.. O

As a corollary of Proposition 4.1 and Proposition 4.2, we have
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PROPOSITION 4.3. Let a be a nonzero element of T'r (O ). Then
the I-dimensional twisted Galois cohomology group H'(G, Of). of Ok
is isomorphic to the factor group

HY(G,0K). = Z.(a)/Be(a).

Now we define for an ideal a of Oy,

Ze(a) :={a € Ok ; a =cs°amod aOk}
B.(a) :={a € Ok ; a =b mod aOf for some b € M.} = M.+ aOg

and

H.(a) := Z.(a)/B.(a).
If o € Zc(a) then p.(a) = >, cs ‘a = |Gla mod aOf so that we have
|G|Zc(a) C Be(a) C Z.(a). In the case of principal ideal (a) of k, let
us denote H.(a) = H.((a)) just for convenience. Proposition 4.3 shows
that H*(G, Ok ). = He(a) for any trace image a € T/, (Ok).

PROPOSITION 4.4. Let a and b be mutually prime ideals of Oy. Then
we have

H.(ab) = H.(a) ® H.(b).

Proof. Let v € Z.(ab). Since v — ¢s %y € abOy, C a0 N bOy, we have
v € Z.(a) and v € Z.(b) so that the natural homomorphism

Zc(ab) — Z.(a)/B.(a) & Z.(b)/B.(b)

is induced. The kernel of the homomorphism is B.(ab). Indeed, let
v € Z.(ab) such that v € B.(a) N B.(b), say, vy —ap = a € aOk and
v —byg = B € bOg for some ag,bg € M.. Since a and b are relatively
prime, there are elements a and b in a and b, respectively, such that
a+ b= 1. Then aby + bag € M, and

v — (abg + bag) = (a + b)y — (aby + bag) = af + ba € abOk

which means v € B.(ab).

Now, it remains to show that the homomorphism is surjective: let
a € Z.(a) and 8 € Z.(b). Define v = a8 + ba where a € a, b € b are
fixed, with the property a+b = 1. Then we have y—cs %y = a(8—cs 8)+
b(a — ¢ %) € abOg so that v € Z.(ab). Since a € B.(a) = M, + aOk
and b € B.(b) = M. + bOg, we have v = a8 + bae = a mod B.(a) and
v = 8 mod Bc(b). O
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PROPOSITION 4.5. For any ideal a of Oy, the group H.(a) is finite.
More precisely, we have

[Be(a) : aOk] = N(a),

and the order of H.(a) divides N(a)"~! where n is the degree of the ex-
tension K /k. In particular, for a prime ideal p of Oy, the order |H.(p")]
is a power of a prime integer p (possibly 1 = p°) where p | p.

Proof. For any ideal a of Ok, we have aOx C B.(a) C Z.(a) C Ok
as additive groups. So we have that |H.(a)| = [Z.(a) : B.(a)] is finite.
On the other hand, it is known that there exists a nonzero integer ¢ in
Ok such that EM. = b = EOg N Oy, is an ideal of O, and Ok is an
ambiguous ideal of Og. Then £aOg N O = ab and we have

B.(a) b+ a0k b b

~

aOg a0k b N&aOgk - %
Hence [B.(a) : aOk] = N(a). We obtain that |H.(a)| = [Z.(a) : B.(a)]
is a divisor of [Of : B.(a)] = N(aOk)/N(a) = N(a)""!. Note that the
norm of the ideal p™ is a power of the prime integer p € Z such that
plp O

THEOREM 4.6. For the ideal Try ,(Ok) of Ok, we have
HYG,Ok)c = H(Tr1(Ok)).-

Proof. We borrow the idea used in the proof of Theorem 2 in [10].
We will show that H.(b) = 0 for any ideal b in Oy which is relatively
prime to T/, (Ok). Let us denote by the ideal Trg /1, (Ok) as a. Let
p be a prime ideal of O with (a,p) = 1. We may choose an ideal b in
Oy such that (ap™,b) = 1 and ap™b is a principal ideal (a) in O. Also
there exists an ideal ¢ in Oy such that (ap™b, ¢) = 1 and ac is a principal
ideal (a’). By Proposition 4.3, we have

H.(a) = H.(d') = HY(G, Og)..
Then by Proposition 4.4, we have
Hc(a) ® He(p™) © He(b) = He(a) © He(c) = Hl(G7 OK)e-

We have |H.(p™)| = p* divides |H.(c)| for some i. But since (a,c) = 1,
whence p | a, we have |H.(p"")| and |H.(¢)| are mutually prime. There-
fore we obtain H.(p™) = 0. This happens for arbitrary prime ideal

p of Ok prime to a and for any positive integer m, hence we also get
H.(b) = 0 and finally we have H*(G, Og). = H.(a). O
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REMARK 4.7. Note that H.(Oy) = 0 since Z.(Ok) = B.(0Oy) = Ok.
If K/k is tamely ramified, we have Trg/,(Ok) = O and we can also
check H'(G,Ok). = 0 by Theorem 4.6.

COROLLARY 4.8. We have

HY(G,0k).2 ] He <pﬁﬂ)

pITri/k(OK)

t
where ey is the ramification index of p, and Dy, = [], (H‘BIP SB) " s
the different of K over k.

Proof. Let Trg,(Ok) = HP‘TTK/k(OK)pr' As in [7], we have 1, =
|tp/ep] since

P Trg;(Ok) < 9" | D

e [Tz 1 q]p"
Blp Blp
< epr <ty

& 1< [ty/epl.

5. Local and global

Let p be a prime ideal in Oy, and 8 be the prime ideal of Ok above p.
We have completions Ky and &, and the extension Ky /k; is Galois with
the Galois group G which is identified as the decomposition group at
B in G. The ring of integers O, O are embedded in Ok, O, , respec-
tively. For 1-cocycle ¢ € Z'(G, 0F), the c-twisted Ggp-module structure
of Ok extends to Ok,, so that we can consider the twisted cohomology
H”(qu,OKm)c of Gy into Ok, On the other hand, as ¢ induces a
l-cocycle cp € Z I(qu, O[X(m) naturally through the embeddings

Gy G —> 05— 05

so that we can regard Ok, as cp-twisted Gyp-module and we can define
the twisted cohomology H™ (G, Oky ey of Gy into Ok, twisted by esyp.
Note that cp-twisted action in Of,, is exactly same as c-twisted action
so that we have H" (G, Oky)e = H" (G, Oky ey -
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THEOREM 5.1. For each dimension n we have
H™(G,0k). = [[ H"(Gy, Oy ey
p
where p runs through the prime ideals in Oy and *J is one prime ideal
of Ok dividing p.

REMARK 5.2. By the same assertion as Theorem 3.1, we have
H"™(Gyp, Ok )egy = 0 if Kip/ky is tamely ramified. Denote by W the set
of all prime ideals p of O which is wildly ramified in Ok . Furthermore,
since T/ (Ok) =1, plte/er] by (4.3), we have

Pl Trgm(Ok) &ty >ep -1 peW.
Hence the theorem states equivalently that
H"(G,0k). = [ H"(Gp,0kp)ey = [ H™(Goyp, Oky)ey-
pew plTr sk (OK)

Proof. This proof is parallel to that of Theorem 1 in [3]. Let O =

[ 1y Ok, and for each prime ideal p in O let O(p) = [ [, Ory- Then

O =[], O(p), and we have that O and O(p) are c-twisted G-modules.
O is diagonally imbedded in O and O(p). Since ¢ is unit in Ok, we

have
I 0= [ Ox =00
s€G /Gy s€G/Gy

where in the product, s varies over a system of representatives of the
cosets in G/Gsy. Therefore by Shapiro’s lemma (of form of 34.1 in [1],
p. 120), we have
H™(G,0(p))e = H"(Gp, Oy )c-
Now we claim that
(5.1) H"(G,0k). = H"(G,0),
which leads the theorem since
H"(G,0k). = [[H'(G,0(p)e = [ [ H" (G, Oy )y
p p

Let € Ok be chosen as a generator of normal basis of K/k. Define
M = % .coM.cs®3 then we have that M is twisted G-regular and
[Ok : M] is finite, say [, as in the proof of Theorem 3.2. Also we define

M= M.’

seG
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where
M. :={a€O; cs’a=aforall s € G}.

Then 9 and M, are twisted G-modules, and we have O NI = M
trivially.

On the other hand, we have O = MM + Ok. Indeed, since IO C M
and MO C M, we have IO O C M. Denote by A =[Ok the ideal in
Ok then we have 20 + O C M+ O C O. It is enough to show that
O C A0 + Og. Now let a = (ap)p € O. By the strong approximation
theorem, there exists an element b in K such that up(b — ayp) > vp(A)
for prime ideals P | A and vp(b) > 0 for prime ideals B not dividing 2.
Then b € Or. Let v =b—a € O then v € Hm‘ﬁ”‘ﬁ(m) C A0. So we
have a = v+ b € A0 + O and hence O = M + Ok.

Therefore we have twisted G-module isomorphisms

ng—i_oKu Ok z%
m m COgNM M-

Since M and 9 are twisted G-regular, we have H"(G, M), = 0 and
H"(G,M). = 0sothat H"(G,Ok). = H"(G,Ok /M), and H" (G, O). =
H"(G,0/M), from the exact sequences 0 - M — Og — Og /M — 0
and 0 - M — O — O/M — 0. Combined with (5.2), we have
H"(G,0k). = H"(G, O)e. O

(5.2)

Now we consider the twisted 1-cohomology for the completion Ky and
ky, at a prime ¢ which is wildly ramified over the extension K/k. Fix
prime elements 7 and II in O, and O, respectively, so that = = 11
and p = () and B = (II) where e, is the ramification index of p. As in
[6], the 1-cohomology of the unit group H I(Gg;;, O;(‘n) is the cyclic group
of order ey, generated by the canonical cohomology class v, /k, with a
representative cocycle cpg such that °II = Ilcg,. Let cp be the 1-cocycle
of (’)IX{m induced by ¢ € Z'(G,Ok) and v = [ep] € H'(Gyp, Ok,,). We
have v = ('me/kp)m for some m such that 0 < m < e,. We may regard
oy as ¢’ by Proposition 2.1.

For an ideal a of Oy,, let

Zey,

Bey(a) = {a € Oky 5 @ =bmod aOf, for some b € My, } = My + aOky,

(a) = {a € Oky ; a =cp, *a mod a0k, }

and Hey (a) = Zey (0)/Bey (a) where Moy, = Z°%(Gy, Ok )eyy- Then we
have very similar arguments with propositions in section 4 for the local
case.
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Since the set of trace image Ter/kp(OKm) is an ideal in Oy, , there
is a nonnegative integer r, such that TTKm/kp(Oqu) = p = (7").
It is known that r, = [ty/ep] where Pl = DKy /ky> and Dy g, 18
the different of Ky over k, because of the same argument with (4.3).
We have H' (G, Ofcy ey = Hey (77) = Heyy (Tr iy /1, (Okcy)) because
propositions 4.1, 4.2, and 4.3 hold naturally in the local case.

Since we have the tower

T Ofgy = PP C Beyy (1"7) C Zey (777) C Oy,
we have
Zog(17%) s By (7)) | NP (B (27) : 57
As in [6], we have II"" M., = p if m # 0 and M., = O, if m = 0.

Therefore we have II" Bey, (1) = II™ My, + H™P*™ = p + sperretm if
m # 0 and Bey (7'%) = O, + B*™ if m = 0. Now

roy - spenre] _ [P T BT p I I N
[BC‘B(WP).&B"P]_‘ Peors-tm ‘_’pﬂ‘ﬁepwm = |t | = V)7
for m # 0, and

o\ . qreprpl (/)kp—i_mepr’a _ Okp _ Okp _ r
By ) 5] = [P | D] = ] = o

for m = 0. Since N(P*™) = N(p)e ™, finally we have
N(B*™)/[Bey (n7) + PeTv] = N (p)fer»=m . We state the summary in
the following proposition.

PRrROPOSITION 5.3. We have
H'(Gop, Oty ) = Heg (Tricy iy (Orcy)) = Hogy (L)

and [Bey (T7 gy /i, (Ory)) + 75y sy (Okiy) O] = N(p)lt/es]. The or-
der |H' (Gyp, OkKy ey | s a divisor of N (p)(erfe=Dlto/en],

6. Quadratic fields

Let K = Q(y/m) be a quadratic number field where m is square-
free, and let & = Q. Since the Galois group G = (s) is cyclic, we
have |[H"(G,Ok).| = |M./P.| for all integer n and for all cocycle ¢ €
Z1(G, 0%). Hence for all dimension n, we have |[H"(G, Ok).| = 1 if and
only if (a) m is congruent to 1 modulo 4, or (b) m =3 (mod 4), m > 0,
¢ ~ *e, and v is odd, where € = u + vy/m is the fundamental unit of
norm 1 in Ok, or equivalently (b’) m = 3 (mod 4), m > 0, ¢ ~ =+e,
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and the central entry a, , of the simple continued fraction expansion
of /m = lag;a1,---,a, is odd (see [4]). In other words, for m = 3
(mod 4), |H"(G,Ok)c| =1 if mg is odd and |[H"(G, Ok).| = 2 if ma is
even, where ¢ ~ % as l-cocycle in Z 1(Gq3, Oky,) in the completion at
P12 (sce [7).

This is verified by computing the 1-twisted cohomology in two ex-
plicit ways. First, let A, = 1 — ¢ss and N, = 1 + ¢;s, and denote
by M€ = ker N, and P° = im N then we have M°¢ = M_. and P¢ =
P_. clearly. On the other hand, as the use of theorem 4.6, we com-
pute He(Trk/q(OK)): We may assume m = 2,3 (mod 4) for consid-
ering the wild ramified case only. We have B.(Trk/q(Ok)) = M. +
TTK/Q(OK)OK = M. + 20k, which satisfies

by Proposition 4.5. To determine Z.(T7x,q(Ok)) when ¢ ~ +e, let
x + yy/m be satistying +e(x — y/m) — (z + y/m) € 20k, equivalently,

(6.1) 2| z(utl)+yvm, 2|av—ylutl).

If v is even, the condition (6.1) gives nothing, so we have Z.(T7rx/q(OK)) =
Ok and |[HY(G,Ok).| = 2. In the case v is odd, which happens when
m =3 (mod 4) only, we obtain x =y (mod 2) so we have [Z.(Trx,q(Ok)) :
Trg/q(Ok)Ok] = 2 and hence [H' (G, Ok).| = 1. For ¢ ~ £1, it is triv-
ial to see Z(Trr/q(Ok)) = Ok and |[H' (G, Ok).| = 2.

7. Biquadratic fields

Here we give an example of the twisted cohomology of a non-cyclic
extension. Let K = Q(/m1,/m2) be a biquadratic field where m1, mo
are distinct and squarefree. K has three subfields k1 = Q(\/m1), k2 =
Q(y/m2), and k3 = Q(y/m3) where m3 = 172 and d = ged(m1, ma).
The Galois group of K over Q is G = Gal(K/Q) = {1, s1, s2, s3} where
s;sj = s with 4, 7, k distinct, s? = 1 for all 7, and for each i s; acts
trivially on the subfield k;, not on k; for j # ¢. It is known that any of
biquadratic fields falls into the following three types:

[Type I] m; =ms =m3 =1 (mod 4) with

O — 171+\/771 1+\/@,<1+\/mﬁ> <1+;/n72>]z‘

Sl 2 2 2
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[Type II] m; =1 and mg = mg = 2,3 (mod 4) with

1
O = [17 L iy, Y20 vmz]

Z

[Type III] m; = 3 and my = m3g =2 (mod 4) with

O = |1, v, i, Y7V
V/

The unit group Oj has one or three fundamental units if only one
or three of my,mo, ms are positive, respectively. Denote by €1, 2,3
the fundamental units of k1, ko, k3 respectively, with norm 1, if it is the
case that ones exist. We also denote ¢; = u; + v;w; for u;,v; € Z and
wi = Y i, =1 (mod 4), w; = /i if m; = 2,3 (mod 4).

For a l-cocycle ¢ € ZY(G,0k™), M./P. for the biquadratic fields
is computed along the 2-adic property of v = [c] in [2] and we give
an explicit computation of M./P. and H'(G, Ok). globally for certain
cocycles ¢ in O3, which inherit cocycles in the unit group of quadratic
subfields, and we compare with the case of the quadratic field. We may
consider only the cases [Type II] and [Type III] because in [Type I], we
have Try;q(Ok) = Z so that the extension is tamely ramified, hence
all the twisted cohomologies vanish.

For i =1,2,3, define ¢; : G — O™ as ¢;; = 1, ¢;5, = 1 and Cis; = i
j # i then ¢; is a 1-cocycle into Ok *. Since the nontrivial action on k;
by G; = Gal(k;/Q) is the same as ones by s; for j # i, we may regard
in the quadratic field k; s; = s, € G; and ¢; € ZY(G4, Ok, ™). Denote by

MCZ(OK) = Mci = ZO(Ga OK)cia
Mci(Oki) = ZO(Giv Oki)cz"

Pe;(Ok) = Pe, = {peio, (@) = ch ‘a; o€ Ok}, and
seG
Fe;(Ok;) = {pe;o, (@) = a+ei¥a; a € O}

7.1. 0-dimensional twisted cohomology

Let a € M., (Ok). Since *a = « if and only if a € Oy, we have

(7'1) MCi(OK) = Mcz(okz)
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We will compute P, (Ok): First note that o + %a € Oy, and

pCiOK(a) = Z cs'a=a+ Ta+e Yo+ g ta
seG
= (a+ %a) + ¢ ¥(a+ *a)

[Type II] Let o« = z+y <%>+z‘/mg+w (M) with z,y, z,w €
Z. Then we have

20 + 2y (FHy™) i=1
a+ ta = 2z+y)+ 2z +w)y/ma, i=2
(2z 4 y) + wy/ms3, i=3.

So we have
PC1 (OK) - 2pcl (Ok1)7 PC2(OK) = PC2(OI€2)7 PC3(OK) - PC3(07€3)'

Hence if my = m3 = 3 (mod 4),

M., 5
P,
M| |1 if v9 is odd
P, )2 if vy is even
M| 1 if v3 is odd
P, | |2 if vg is even
while if mo = mg =2 (mod 4), it is shown in [2] that ‘]\];[cc = 2 for

all cocycles c.
[Type III] Let o = x+y/mi+zy/ma+w (M) with z,y, z,w € Z.

Then
2z + 2y /myq, i1=1
a+ Vo= 2+ (22 +w)/ma, i=
2x + wy/ms3, 1= 3.

We obtain that
Pe,(Ok) = 2P, (Of,), and Pcz(OK) = pCiOki([Q‘) V m;lz) C Pci(oki)7
for ¢ = 2,3. For i = 2,3, let & € Ok, be an integer in k; such that

Cis; = Séfl We may choose & = 1+ %ig; = (u;+1) —v;y/m;. Then
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§iPe; (Ok,;) = Ty, 1q(&iOk,) and
&ibeio,. ([2, vmilz) = Ty, )q(&i[2, /milz). Tt is easy to see that

(7.2) Trki/Q(@(’)ki) ={2((u; + 1)z —yvymy) ; x,y € Z}
(7.3) = 2ged(u; + 1, v;m;)Z
(7.4)  Try,q&l2, vmilz) = {2 (2(u; + 1)z — yvimy) 5 =,y € Z}
(7.5) = 2gcd(2(u; + 1), vim;)Z.
Hence we have
Pc(Ok) if D,L is Odd,
c; 2, VI = ‘ ‘ . .
p ’Oki([ milz) {QPCZ.(O;%) if D; is even,
if we denote by
(7.6) D; = Vi

gcd(ui +1, Ui) .
As a result, we have

if v1 is odd
if v1 is even

MC1

MCZ

(i=2,3).

B if D; is odd
N if D; is even
We can rewrite the condition for ¢ = 2,3 as

Mcl B {4 ifu; =1, =0 (mod 4)

. (1 =12,3).
otherwise

Indeed, if u; = 1,v; =0 (mod 4), ged(u; + 1, v;) = 2 so trivially
D; is even. Also it is easy to see that if v; = 2 (mod 4) then D;
is odd for any odd w;. The case remained is that u; = 3,v; = 0
(mod 4). Let v > 2 be satisfying 2" || v;. By Lemma 7 in [4], we
have u; +1 = 0 or 2 (mod 2"*!), and hence we have that D; is
odd.

REMARK 7.1. For m; = 2 (mod 4), squarefree, with the norm
of fundamental unit N(g;) = 1, the both parity of D; occur, while
the odd case appears more frequently. Up to 500, we have m;’s
with odd D;:

6, 14, 22, 30, 34, 38, 42, 46, 62, 70, 78, 86, 94, 102, 110, 118, 134,
138, 142, 154, 158, 166, 174, 182, 186, 190, 194, 206, 210, 214, 222,
230, 238, 246, 254, 262, 266, 278, 282, 286, 302, 210, 218, 322, 326,
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330, 334, 358, 366, 374, 382, 386, 390, 398, 406, 422, 426, 430, 434,
438, 446, 454, 462, 470, 474, 478, 482, 494,

and m;’s with even D; (that is, u; = 1,v; =0 (mod 4)):
66, 114, 146, 178, 258, 354, 402, 410, 418, 466, 498.

7.2. 1-dimensional twisted cohomology

We compute Z, (T7x/q(Ok)) in order to get the index
[Ze;(Tri/q(OKk)) : Tri/q(Ok)Ok], while

|HY (G, Ok)e| = [2e,(TTx)q(OK)) : Tr/q(OK)OK]/|Ok/ Tk /q(OK )|
by Proposition 4.5. For the condition to o € Z,(Trk,q(Ok)), note that
for distinct 4, j, and k, when ¢, “a — a = Ya —a € Trg/q(Ok)Ok,
since €; “ia — a = %(g; **a — o) + o — o, we have

cis; "o —a=¢g; "o —a € Trg;q(OK)Ok
if and only if

Cis, fo—a = g;"a — a € Try/q(Ok) Ok,
hence it is enough to check cocycle images of only two automorphisms,

one with the same index ¢ and one any other.

[Type II] Note that Trg/q(Ok) = 2Z and
[Be(Tri/q(OK)) : Triq(Ok)Ok] = 2 for all 1-cocycles ¢ by
Proposition 4.5. Denote by the integral basis elements n; = 1, 12 =
LIy = g, e = YRS o6 that O = [, 72, 13, 74)z-
(a) c=cy.
Let o = xny + yn2 + zn3 + wny € Ze, (20k). The condition
81y — a € 20 holds for all integer in Og. Since

{x(ul - 1)+ y{ul + v <1 _4m1> }]771

[zv1 — y(ur +1)]ne

)
¢ s )
¢ a4 o

S2

1 ‘0 —«
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where lff“, d2 , and M are integers, we have the sys-
tem of congruence equatlons
(7.7) z(ur — 1)+ y(ur +vi(1 —my)/4) =0 (mod 2)
(7.8) zv; —y(up +1) =0 (mod 2)
(7.9)

zZ(up —1—=v1(d—1)/2) + w(us +v1(2—m1/d—d)/4) =0 (mod 2)
(7.10) zv; +w(vi(d—1)/2—u; —1) =0 (mod 2)

for d is odd as a divisor of m;. We separate the cases along to

the parity of u; and vy:

(i) Suppose v; is even. Then u; is odd and the system of
equations turns out to be y = w = 0 (mod 2). We have
[Zc,(20k) : 20k] = 4 and hence |HY (G, Ok ) ey | = [Ze, (20k) :
B, (2OK)] =2

(ii) Suppose v; is odd and u; is even. Note the fact that v;
is odd implies m1 =5 (mod 8) since if we assume m; =1
(mod 8) then ™.=L is even and 1 = N(e1) = uq(uy +v1) —

vl L=y (u1 +1) =0 (mod 2) makes a contradiction.

Now since m; =5 (mod 8), we have that ml_l is odd and

M @ (mod 2). Indeed, since d is odd we have
d? = 1 (mod 8) so my/d = mid (mod 8) and

2—my/d—d=2-5d—d (mod 8)
=2—-6(d+1)+6 (mod38)

—8—12(d;> (mod 8)
_4<d;1> (mod 8).

The system of equations (7.7)—(7.10) becomes
(7.11) z+y=0 (mod 2)
(7.12) z2(1=(d—-1)/2)+w(d+1)/2=0 (mod 2)
(7.13) z4+w((d—1)/2—-1)=0 (mod 2).

First suppose that (d —1)/2 is odd and (d+ 1)/2 is even.
The system of equation turns to x =y (mod 2) and z =0
(mod 2). On the other hand, if (d — 1)/2 is even and
(d + 1)/2 is odd, then the system of equation turns to
z =y (mod 2) and z = w (mod 2). In any case, the
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index of Z. (20k) from 20 is equal to 4 and hence
’Hl(G’ OK)61| = 2.
(ili) Suppose v1 and uy are odd. We have that "™=1is odd and

Wﬂ = %. The system of equations (7.7)—(7.10)

turns to
(7.14) x=0 (mod 2)
(7.15) —z2(d—-1)/24+w(l+(d+1)/2) =0 (mod 2)
(7.16) z4+w(d—1)/2=0 (mod 2).

If d =1 (mod 4), since (d —1)/2 is even and (d + 1)/2
is odd, we obtain x = 0 (mod 2) and z = 0 (mod 2). If
d =3 (mod 4) then we obtain z =0 (mod 2) and z = w
(mod 2). Either of the cases, we have [Z,, (20k) : 20k]| =
4 and therefore we have |HY(G,Ok)e,| = [Z,(20k) :
B, (20k)] = 2.
(b) ¢ =ca.

Let a = axmy + yne + 2n3 + wny € Z,(20k). From %20 — o =

yn — 2yne +wns — 2wny € 20k, we obtain that y, w are even.

Now we have

el m2/d>} m

e %l —a = [x(uz — 1) — zvamg — wuy <

2
m
+ [y(uz —-1)— wvgf} 72
d—1

+ |zv9 — yvo )~ z(ug +1)| n3

+ [yvod — w(ug + 1)] n4

€20k

which yields the system of equations

(7.17) x(ug — 1) — zvome =0 (mod 2)
(7.18) a2vg — z(ug +1) =0 (mod 2)

for y,w = 0 (mod 2). Since we have that us and vy have

distinct parity, there are two cases:

(i) Suppose vy is odd. Then my is odd and wug is even. the sys-
tem of equations (7.17)—(7.18) turns to be x = z (mod 2).
So Z.,(20k) is the set of elements xn; + yna + 2n3 + wny
with © = 2,y = w = 0 (mod 2) and has index 2 from
20y . Therefore we have |H (G, Ok).,| = 1.
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(ii) Suppose v2 is even. The system of equations (7.17)—(7.18)
does not give any restricting conditions. So we have Z., (20k)
is the set of elements zn; +yna+2n3+wns withy =w =0
(mod 2) with index 4 from 20 and hence |HY(G, Ok )e,| =
2.

(c) c=cs.
Let v = xm + yma2 + 2m3 + wna € Z,(20k). From *3a —a =
ym — 2yn2 — (22 + w)ns € 20k we have y = w = 0 (mod 2).

Now
e3’la—a = [a:(u;; — 1)+ zvs (%) + wus (W)} m
ot (2) (2]

+ [—mg + yus (ml/;l_l) = (us + 1)} s

+ [2zv3 + yvs — w(us + 1) m4

where 72, m2/§_m3, ml/;_l are integers. Since y = w = 0

(mod 2), we obtain the system of congruence equations

(7.19) x(ug — 1) + zv3(me/d) =0 (mod 2)
(7.20) a2vs + z(ug+1) =0 (mod 2)

(i) Suppose v3 is odd. Then ms and mgy are odd, and we
obtain from the system of equations (7.19)—(7.20) that =+
z =0 (mod 2). So we have Z.,(20) is the set of elements
xn + yne + z2n3 + wng with x = 2, y = w = 0 (mod 2)
with index 2 from 20k and hence |[H' (G, Ok )es| = 1.

(ii) Suppose v3 is even. We obtain no more conditions other
than y = w = 0 (mod 2) from the system of equations
(7.19)-(7.20). |[HY(G, Ok )es| = 2.

[Type III] Note that Trg/q(Ok) = 4Z and we have [B.(40k) : 40| =
4 for all cocycles ¢ by Proposition 4.5. Denote by the integral basis
elements 11 = 1, o = \/m1, N3 = /M2, N4 = m so that
Ok = [n1,m2,13, M)z
(a) c=cy.

Let o = xmy + yma + 2m3 + wny € Z, (40k). From o — v =
—2zn3 — 2wny € 40k we have z = w = 0 (mod 2). On the
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other hand, we have that

52

e1%%0 — o = [z(ur — 1) —yvyma] m
+ [zvr —y(ur + 1))
d+d
+ [z(ul —1—und)+w {ul - <m1/2> H N3
+ [2zv1d + w(—up — 1 + v1d)] m4
€40k
where (W) is an integer, which yields the system of con-
gruence equations
(7.21) x(up —1)+yv; =0 (mod 4)
(7.22) xv; —y(up +1) =0 (mod 4)
(7.23) wu; =0 (mod 4)

since m; = 3 (mod 4), u; # v1 (mod 2), z=w =0 (mod 2),

d=1 (mod 2), and W =0 (mod 2).

(i) Suppose v; is odd and so u; is even. Then equations (7.21)
and (7.22) are equivalent and equation (7.23) is trivial.
We obtain z = y (mod 4) if uy + 1 = v; (mod 4) and we
obtain x = —y (mod 4) if u; — 1 =wv; (mod 4). Together
with the condition z = w = 0 (mod 2), we have that
[Z:,(40k) : 40k] = 16. Hence |H* (G, Ok),,| = 4, which
is the case that [HO(G, Ok)e| # |HY(G, Ok ).

(ii) Suppose v; is even. Note that v; = 0 (mod 4). Indeed,
since u7 is odd, we have (“17_1) (“1T‘H) =m (%1)2 with
integer terms. As the multiple of consecutive numbers,
the left hand side is even, so v1/2 is even. Now, equation
(7.23) gives w = 0 (mod 4). Equations (7.21) and (7.22)
gives that if u; = 1 (mod 4) then y = 0 (mod 2) and if
u; = 3 (mod 4) then z = 0 (mod 2). Together with the
conditions z = 0 (mod 2) and w = 0 (mod 4), we have
that [Z,, (40k) : 40k] = 16 and |HY (G, Ok)., | = 4.

(b) ¢ = ca.

Let aw = xmy + yma + 2m3 + wny € Z,,(40k). Since 2o — v =

—2yna+wnz —2wny € 40k, we have y =0 (mod 2) and w =0

(mod 4).
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Now from the condition

g9l —a = [x(ug — 1) — zvamg — wovg <%)} m
+ [y(uz — 1) —wvy (%)] 2
+ [zve — yvad — 2(ug + 1)] 03

+ [2yvad — w(ug + 1)) n4
€40y

we obtain the system of congruence equations

z(ug —1) =0 (mod 4)
zvg — z(ug +1) =0 (mod 4)

since mg = 2 (mod 4), uz =1 (mod 2), and vo = 0 (mod 2).
If ug = 3 (mod 4), the system of congruence equations turns
toxz =0 (mod 2). When uy =1 (mod 4), if v = 0 (mod 4)
then the system of equations implies that z = 0 (mod 2), and
if v9 = 2 (mod 4), one does that x = z (mod 2). Therefore,
we have Z.,(40k) is the set of elements zn; + yne + 21m3 +
wny with 2 = y = 0 (mod 2) and w = 0 (mod 4) if uy =
3 (mod 4), the set of elements zn; + yne + 213 + wny with
y=2=0 (mod?2) and w = 0 (mod 4) if ug = 1 (mod 4)
and v = 0 (mod 4), and the set of elements defined by the
conditions z = z (mod 2), y =0 (mod 2), and w =0 (mod 4)
if ug =1 (mod 4) and v2 = 2 (mod 4). In any cases the index
of Z.,(40k) from 40k is 16 and we have |H (G, Ok).,| = 4.
CAomparing to the order of 0-Tate twisted cohomology, we have
|HY(G, Ok )e,| # |HYG, OK)e,| if ug =3 (mod 4), or if ug =
1 (mod 4) and vy =2 (mod 4).

C = C3.

Let o« = om + ym2 + 2n3 + wny € Ze,(40k). Since *3a —
a = —2yne — (w+ 22)n3 € 40k, we have y = 0 (mod 2) and
w+ 2z = 0 (mod 4). The latter condition shows that w is
even, and that w =0 (mod 4) if and only if z =0 (mod 2).
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Now from the condition

+ |y(uz — 1) — zv3 m2> — w3 (%)] 2

m

+ [ T3 + Yyvs ( dl) — z(us + 1)} 73
+ [2$U3 — w(u;», -+ 1)] N4

€40k,

we obtain the system of congruence equations

(7.26) z(us —1) =0 (mod 4)
(7.27) —av3 —2(ug +1) =0 (mod 4),

and it turns to be following equations due to us3, vs modulo 4:
z =0 (mod 2) and w = 0 (mod 4) if u3 = 1 (mod 4) and
v3 =0 (mod 4); x = z (mod 2) if u3 =1 (mod 4) and v3 = 2
(mod 4); and z =0 (mod 2) if ug =3 (mod 4).

Hence Z.,(40f) is the set of elements o = xn +yna+2n3+wny

satisfying
y=2z=0 (mod 2) . _ _
{ w=0 (mod 4) ifus=1 (mod4) and v3 =0 (mod 4)
r =z (mod 2)
y=0 (mod 2) ifus =1 (mod 4) and v3 =2 (mod 4)
w=2z (mod 4)
r=y=0 (mod 2) . _
{ w =2z (mod4) ifug =3 (mod4)

and we have that [Z,,(40k) : 40k] = 16 and |H (G, Ok)ey| =
4 in any cases. Also we have |[H?(G, Ok )ey| # |HN (G, Ok ) eyl
if u3 =3 (mod 4) or if ug =1, v3 =2 (mod 4).

REMARK 7.2. It is casy to see that |[HY(G, Ok)| = |HY(G, Ok)| = 2
or 4 for Type II or Type III, respectively. As a summary, we have
|HY (G, Ok).| # |[H (G, Ok)¢| in Type III, when

(a) ¢
(b) ¢
(c) ¢

c1 and vy is odd
¢ ndul_?) (mod 4), for i = 2,3
¢i, ui =1 (mod 4), and v; = 2 (mod 4), for i = 2, 3.
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